Neurokinin 1 receptors regulate morphine-induced endocytosis and desensitization of mu-opioid receptors in CNS neurons.

نویسندگان

  • Y Joy Yu
  • Seksiri Arttamangkul
  • Christopher J Evans
  • John T Williams
  • Mark von Zastrow
چکیده

mu-Opioid receptors (MORs) are G-protein-coupled receptors (GPCRs) that mediate the physiological effects of endogenous opioid neuropeptides and opiate drugs such as morphine. MORs are coexpressed with neurokinin 1 receptors (NK1Rs) in several regions of the CNS that control opioid dependence and reward. NK1R activation affects opioid reward specifically, however, and the cellular basis for this specificity is unknown. We found that ligand-induced activation of NK1Rs produces a cell-autonomous and nonreciprocal inhibition of MOR endocytosis induced by diverse opioids. Studies using epitope-tagged receptors expressed in cultured striatal neurons and a neuroblastoma cell model indicated that this heterologous regulation is mediated by NK1R-dependent sequestration of arrestins on endosome membranes. First, endocytic inhibition mediated by wild-type NK1Rs was overcome in cells overexpressing beta-arrestin2, a major arrestin isoform expressed in striatum. Second, NK1R activation promoted sequestration of beta-arrestin2 on endosomes, whereas MOR activation did not. Third, heterologous inhibition of MOR endocytosis was prevented by mutational disruption of beta-arrestin2 sequestration by NK1Rs. NK1R-mediated regulation of MOR trafficking was associated with reduced opioid-induced desensitization of adenylyl cyclase signaling in striatal neurons. Furthermore, heterologous regulation of MOR trafficking was observed in both amygdala and locus ceruleus neurons that naturally coexpress these receptors. These results identify a cell-autonomous mechanism that may underlie the highly specific effects of NK1R on opioid signaling and suggest, more generally, that receptor-specific trafficking of arrestins may represent a fundamental mechanism for coordinating distinct GPCR-mediated signals at the level of individual CNS neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons.

Morphine activates mu-opioid receptors (MORs) without promoting their rapid endocytosis in a number of cell types. A previous study suggested that morphine can drive rapid redistribution of MORs in the nucleus accumbens, but it was not possible in this in vivo study to identify a specific membrane trafficking pathway affected by morphine, to exclude possible indirect actions of morphine via opi...

متن کامل

Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors.

The differential ability of various mu-opioid receptor (MOP) agonists to induce rapid receptor desensitization and endocytosis of MOP could arise simply from differences in their efficacy to activate G proteins or, alternatively, be due to differential capacity for activation of other signaling processes. We used AtT20 cells stably expressing a low density of FLAG-tagged MOP to compare the effi...

متن کامل

Morphine induces endocytosis of neuronal μ-opioid receptors through the sustained transfer of Gα subunits to RGSZ2 proteins

BACKGROUND In general, opioids that induce the recycling of mu-opioid receptors (MORs) promote little desensitization, although morphine is one exception to this rule. While morphine fails to provoke significant internalization of MORs in cultured cells, it does stimulate profound desensitization. In contrast, morphine does promote some internalization of MORs in neurons although this does not ...

متن کامل

Endocytosis of the Mu Opioid Receptor Reduces Tolerance and a Cellular Hallmark of Opiate Withdrawal

Morphine is unusual in its failure to promote robust desensitization and endocytosis of the mu opioid receptor (MOR), processes that for many receptors contribute directly to tolerance. This apparent paradox has led us to revise the idea that receptor desensitization and endocytosis are solely responsible for tolerance and withdrawal to morphine, and instead test the hypothesis that these side ...

متن کامل

Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons.

Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2009